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Summary 

A computer simulation of ordered powder mixing has been carried out in order to ascertain the properties of ordered mixtures 

independently of errors associated with sampling and assay. The effect of sample size on the standard deviation of sample 

concentration has been ascertained for a variety of simulated mixes of various carrier particle sizes and particle size distributions. 

Excepting the case where the carrier particles are monosized, an inverse relationship between sample standard deviation and the 

square-root of sample size is found in all cases. This is identical to the situation when a random powder mix is formed. Thus 

distinguishing between ordered and random mixtures must be based on other factors. i.e. in&e~articulate interaction, degree of 

homogeneity and segregation tendencies. The standard deviation sample size relations~p is not, as previously thought, a useful 

criterion for ordered mixtures. Only when the carrier is monosized is the theoretical independent relationship of standard deviation 

with sample size observed as demonstrated with ideal ordered mixtures. The results showed that for real ordered powder mixtures, 

the carrier particle size should be as large as possible within other technological constraints and of narrow size range in order to 

prepare homogeneous dose forms. 

Introduction 

Powder mixing is one of the major unit oper- 
ations in pha~aceut~c~ manufactu~ng. Unfor- 
tunately pharmaceutical powder mixing is also 
one of the least investigated processes. Most of the 
available literature on powder mixing deals with 
mixing of non-pharmaceutical ingredients and in 
most cases, deals with random mixtures. Random 
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mixtures can be achieved only when the powders 
being mixed are free-flowing and non-interacting. 
However, most pharmaceutical powder mixtures 
do not fail into the criteria of random mixture and 
contain interacting and non-free-flowing ingredi- 
ents. Hence, the concept of ordered mixing was 
proposed (Hersey, 1976) to explain powder mixing 
of cohesive or interacting fine powders. 

The simplest ordered powder mixture is a 
coarse-fine particulate mixture in which the fine 
particles, the adsorbents, adhere to the coarser 
particles, the carriers. Several experimental meth- 
ods have been developed to assess whether an 
ordered coarse-fine particulate mixture has been 
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formed. One of such methods is examining the 
powder mixture under an electron microscope to 
determine the degree of adhesion between the fine 

and coarse powders (Crooks and Ho, 1976). The 
electron microscopy method is tedious and re- 

quires expansive equipment; moreover, the pre- 
paration procedure of the sample for electron 

microscopy may introduce artifacts into the re- 

sults. A simpler sieving method (Yip and Hersey, 
1977a) was introduced in which the ordered mix- 

ture is sifted using a mesh size through which the 

fine powder but not the coarse powder can pass. 
The fine powders of a coarse-fine ordered mixture 
do not pass through the sieve because of their 
interaction with the coarse particles. So far the 
method of sifting has not been standardized and 
attrition of the powders during sifting may intro- 
duce erroneous results. 

Another method of assessing ordered mixtures 

was proposed by Yeung and Hersey (1979). They 
suggested that an ordered mixture is formed if the 
standard deviation of samples of the mixture is a 

constant and independent of the sizes of the sam- 
ples taken. The standard deviations of different 

samples of the microfine salicylic acid/coarse 
lactose powder mixtures they investigated seemed 
to confirm the independency of sample standard 
deviations and sample sizes for an ordered mix- 
ture. However, Orr (1979) suggested an alternate 
explanation to the independency relationship. He 

argued that the actual relationship between sam- 

ple standard deviation and sample size was being 
masked by the large standard errors due to sam- 
pling and analytical procedures. However, Orr did 
not propose what the actual relationship is. The 
present investigation attempts to use computer 
simulation to determine the actual relationship 
between sample standard deviations and sample 
sizes for a coarse-fine ordered mixture. Computer 
simulation of ordered powder mixtures has the 
advantage of assessing the properties of a powder 
mixture without being affected by the dependent 
phenomena associated with real systems. The re- 
sults generated by the computer simulation also 
give an insight to pharmaceutical powder mixing 
of what powder mixture properties will result if 
the size and size distribution of the carrier particle 
of ordered powder mixture are being altered. 

Theory 

The adsorbent particles were assumed to be 
much smaller than the carrier particles in size and 

there was no ‘interbridge adhesion’ of adsorbent 
particles with more than one carrier particle. Both 

theoretical and experimental particle size distribu- 

tions in literature have been reported mostly to be 
log normal either by weight (Mehta et al., 1977) or 

by number (Carstensen and Patel, 1975; Carsten- 

sen and Rodriguez-Hornedo, 1985). In this study, 
the carrier particles were spherical particles, where 
(R,), is the radius of the ith carrier particle, 

whose sizes were assumed to be log-normally (by 
weight) distributed. The adsorbent particles were 
monosized spherical particles of radius, R a. The 

respective densities of carrier and adsorbent com- 
ponents were p, and pa. 

For a particular ordered system, 0.1% w/w 
microfine salicylic acid and crystalline sugar mix- 

ture, experiments have shown (Yip and Hersey. 
1976) that the percentage coverage of the surface 
of carrier sugar particles by the salicylic acid 
particles is a constant and equal to approximately 
2.5%. In the current work, this constancy in per- 
centage coverage of the carrier particle surface by 
adsorbent particles was assumed, as a constant A 
(where A 5 1). Hence, the number of adsorbent 
particles (N,), adhering to the ith carrier particle 

is: 

4Aa( R,)f 
(K),= nRZ 

3 

(1) 

The corresponding mass of adsorbent particles, 
(M,), adhering to the ith carrier particle is 

(Ma), = (X)&&h (2) 

When a number of carrier particles is taken until 
their total weight equals approximately the nomi- 
nal sample size, W, the sample concentration of 
the adsorbent component (in w/w unit) is calcu- 
lated from the equation, 
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J 

where 7 is the sample weight of the jfh sample 
and equals approximately the nominal sample size, 
W, C, is the concentration (in w/w unit) of the 
adsorbent component in the jth sample. Eqn. 3 is 

simplified as: 

where K = 4Ap,RJp, and is a constant for the 
current system which has constant percentage 
coverage of carrier particle surface, A, with mono- 

sized adsorbent particles, R a. 

Experimental 

The ideal ordered mixture was simulated 
according to the above theory. A Control Data 

Corporation CYBER 73 (96K) computer was used 
for the simulation. The computer program for the 
simulation which was written in Fortran language 
is shown schematically as a flow chart in Fig. 1. 

The weight of the carrier particles, which had a 
log-normality of the size distribution was made 
possible by generating a set of Z-scores and using 
the logarithms of the mean carrier particle size, p 
and the standard deviation of the carrier particle 
size distribution, u. Mathematically the random 
generation of particle weight, which has a log-nor- 
mal size distribution, is described by the following 
Eqns. 5 and 6: 

Z = x - log I” 
log u (5) 

where Z is the randomly generated Z-score, x is 
the random number which is log normally distrib- 
uted, p is the mean particle size of the carrier 

particles, and u is the standard deviation of the 

carrier particle size distribution. Hence, the weight 
of a carrier particle is: 

WC = 10” (6) 

A number of carrier particles were taken until the 
total weight of carrier particles just exceeded the 

nominal sample weight. For each size distribution 
of carrier particles (which was characterized by p 

and a), 20 samples of 10 different nominal sample 

sizes were simulated. 

The sample standard deviation at each sample 

size was calculated using C, as defined by Eqn. 3. 

The percentage coverage, A, the densities of the 
carrier and the adsorbent components, p, and pa 

in Eqn. 3 were constants and assumed a value of 
unity to simplify the calculation. 

The standard deviation-sample size relation- 
ship of an ordered system was investigated in 

three different conditions which are of practical 
interest. 

(A) Varying the size range of the carrier particles. 

The standard deviation-sample size relationship 

of an ideal ordered mixture was investigated, 
whose carrier particles had the following combina- 
tion of mean particles size, p and standard devia- 
tion of carrier particle size distribution, u. 

- (1) p= 10, u = 1.86 

(2) /_l= 31.48 u = 1.34 

(3) p = 31.48 u = 1.23 

(4) p = 31.48 u = 0.00 

(corresponding to a size 
range l-100) 
(corresponding to a size 
range 10-100) 

(corresponding to a size 
range 14-70) 
(corresponding to 
monosized carrier par- 
ticle) 

(B) Vatying the standard deviation of carrier 

particle size distribution, a, while keeping the mean 
carrier particle size, p, constant. The effects of 
the standard deviation-sample size relationship 
were investigated with various standard deviations 
of the carrier particle size distribution whose val- 
ues ranged from 10M4 to 10-l (in weight units). 
The mean particle sizes investigated were 31.48 
and 314.8 (in weight units), respectively. 

(C) Varying the mean carrier particle size while 

keeping the standard deviation of the carrier particle 
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Fig. 1. Schematic representation of the computer simulation program. 
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size distribution constant at a value, 10e4. The 

effects on the standard deviation-sample size re- 
lationship were investigated with various mean 
carrier particle sizes whose values ranged from 10 

to 1000. The nominal sample weight was changed 
proportionally with mean carrier particle. For ex- 
ample, when the mean carrier particle size was 

changed from 10 to 1000, the sample weight, 100 
(in weight unit) was changed to 10,000 (in weight 

units). The changes in nominal sample weight with 

mean size were anticipated to allow a fair assess- 
ment of the effects of varying mean particle size, 

which eliminates the effects of changes in the 

number of particles per sample. 

Results 

Fig. 2 shows that an increase in carrier particle 
size range correspondingly increased the sample 
standard deviation. When monosized carrier par- 
ticles (i.e. u = 0) were used, the sample standard 
deviation was independent of sample sizes and 

equated to a value of zero, i.e. a perfectly uniform 
mixture. 

Tables 1 and 2 show that for a given sample 

size, the ratio of sample standard deviation to the 

logarithms of standard deviation of carrier particle 
size distribution, u, is a constant at the 90% confi- 

dence level. The aforementioned observation sug- 
gests that the sample standard deviation and log(a) 

are proportionally related. 
Table 3 demonstrates no simple relationship 

TABLE 1 

The ratio of the sample standard deviation to the logarithm of standard deviation of carrier partlcle size distribution o, with the 
corresponding lower and upper 90 B confidence limits which are separated by a comma 

Mean carrier particle size = 31.48 (in weight unit). 

Sample size 0 

0.1 0.01 0.001 0.0001 

100 0.621 0.568 0.549 0.566 
0.483, 0.820 0.442, 0.750 0.427.0.724 0.440, 0.747 

150 0.475 0.500 0.573 0.500 
0.369, 0.627 0.389, 0.660 0.445, 0.757 0.389, 0.660 

200 0.443 0.445 0.405 0.445 
0.345, 0.565 0.346, 0.588 0.315, 0.535 0.346. 0.588 

300 0.390 0.349 0.394 0.348 
0.303, 0.515 0.271, 0.461 0.306, 0.520 0.271. 0.459 

600 0.265 0.263 0.260 0.249 
0.206, 0.350 0.205.0.347 0.202, 0.343 0.194, 0.329 

1000 0.226 0.205 0.189 0.216 
0.176, 0.298 0.159, 0.271 0.147. 0.250 0.168, 0.285 

2000 0.133 0.123 0.133 0.133 
0.103, 0.176 0.096,0.162 0.103,0.176 0.103, 0.176 

4000 0.113 0.102 0.102 0.103 
0.088.0.149 0.079, 0.135 0.079, 0.135 0.080. 0.136 

8000 0.071 0.073 0.063 0.070 
0.055,0.094 0.057, 0.096 0.049, 0.083 0.054, 0.092 

15,000 0.052 0.049 0.051 0.048 
0.040, 0.069 0.038, 0.065 0.040, 0.067 0.037, 0.063 
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exists between the sample standard deviation and 
50- 

P 
mean carrier particle size. But in general, an in- 
crease in mean particle size, p, decreases the sam- 

7 ple standard deviation. 

Fig. 2 shows that the logarithm of sample size 

and the logarithm of the sample standard devia- 

tion are linearly related with a slope of an ap- 

Fig. 2. The variance-sample size relationship of ideal ordered 

mixtures which have the following combination of mean par- 

ticle size, p, and standard deviation of carrier particle size 

distribution, (J. 

+: ~_r = 10.00; (J = 1.86 (slope - 0.532; correlation coefficient 

~ 0.997) 

A: p = 31.48; 0 = 1.34 (slope -0.509: correlation coefficient 
_*_A_ ~~ A___*__ f L J* - ~ 0.998) 

100 500 ,000 5000 1cnoo 
n : p = 31.48; CJ = 1.23 (slope P0.510; correlation coefficient 

sompie 5,ze (in weight ““1, 109 sic1e ~ 0.999) 

0: I* = 31.48; 0 = 0.00 (slope 0: coefficient 1.000) 

TABLE 2 

The rutio of the sumple standard deuiatron to the logudthm of standard devimon of ccrmer purticle sire distnhutlon 0, wth the 

corresponding lower und upper 90 % confidence limits which are separated hv a comma 

Mean carrier particle size = 314.8 (in weight unit) 

Sample size 0 

0.1 0.01 0.001 O.ocQl 

1000 0.269 0.264 0.263 0.278 

0.224, 0.380 0.205,0.349 0.205, 0.347 0.216. 0.327 

1500 0.221 0.232 0.232 0.259 

0.172. 0.292 0.180, 0.306 0.180.0.306 0.201. 0.342 

2000 0.206 0.207 0.207 0.230 

0.160, 0.272 0.161, 0.273 0.161, 0.273 0.179. 0.303 

3000 0.181 0.162 0.162 0.161 

0.141, 0.239 0.126, 0.214 0.126. 0.214 0.125. 0.213 

6ooO 0.123 0.122 0.116 0.117 

0.096. 0.162 0.094, 0.161 0.090, 0.153 0.091,0.154 

10,000 0.105 0.095 0.100 0.096 

0.082, 0.139 0.074, 0.125 0.078, 0.132 0.075. 0.127 

20,cOO 0.062 0.057 0.062 0.062 

0.048. 0.082 0.044,0.075 0.048, 0.082 0.048, 0.082 

40,OQo 0.052 0.047 0.048 0.046 

0.040. 0.069 0.037, 0.062 0.037.0.063 0.063. 0.061 

80,000 0.033 0.034 0.032 0.033 

0.026, 0.045 0.026, 0.045 0.025, 0.042 0.026, 0.044 

150,000 0.024 0.023 0.022 0.024 

0.019.0.032 0.018,0.030 0.017, 0.029 0.019, 0.032 
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TABLE 3 

The sample standard deviation (X IO’) at different sample sizes 
of an ideal mixture with different mean carrier sire distribution, 
but with a constant standard deviation of carrier size distribution, 
10-4 

Nominal 

sample 
size a 

Mean carrier particle size (in weight units) 

10 100 1000 10,000 

100 5.379 2.497 1.159 0.438 

150 3.763 1.747 0.883 0.387 

200 3.708 1.721 0.833 0.439 

300 3.032 1.408 0.653 0.315 

600 2.018 0.937 0.435 0.202 

1000 1.796 0.834 0.387 0.180 

2000 1.331 0.618 0.287 0.133 

4000 0.831 0.386 0.179 0.083 

8000 0.583 0.271 0.126 0.058 

15,000 0.443 0.206 0.096 0.044 

a The nominal sample size is the sample size for the ideal 

ordered mixture with mean carrier particle size, 10, the sample 

size for mixture with different mean carrier particle size is 

changed proportionally (see text). 

proximated value, -0.5, with the exception of 

sample standard deviation at value zero when the 
logarithm of sample standard deviation is mathe- 
matically undefined. In linear terms, there is an 

inverse linear relationship between sample stan- 
dard deviation and the square-root of sample size. 

Discussion 

The above results suggest that there is an in- 
verse relationship between sample standard devia- 
tion and the square-root of sample size, excepting 

when the sample standard deviation is zero, when 
it is independent of sample size. Also sample 
standard deviation increases with larger size range 
of carrier particles, and sample standard deviation 
decreases with larger mean carrier particle size. 
Thus the empirical relationship of the coarse-fine 
ordered mixture investigated is similar to the 
standard deviation-sample size relationship of a 
random mixture (Lacey, 1953). The present results 
seem to confirm Orr’s (1979) belief that the sam- 
ple standard deviation is not independent of the 
sample size for an ordered mixture. The empirical 
relationship between sample size and standard 

deviation can be used for extrapolating the stan- 

dard deviation-sample size relationship to the re- 
quired sample size. This extrapolation is possible 
only when the trend of the standard devia- 
tion-sample size is not masked by large experi- 

mental errors. 
A wide size range of carrier particles has been 

suggested to cause ‘ordered unit segregation’ which 
subsequently leads to a less homogeneous ordered 

mixture (Yip and Hersey, 1977b). The above re- 
lationship suggests that even in the absence of 

‘ordered unit segregation’, the homogeneity of an 
ordered mixture can be decreased by simply using 

a large size range of carrier particles. A narrow 

size range of carrier particles has dual advantages 
of both increasing the homogeneity and maintain- 

ing that homogeneity by avoiding ‘ordered unit 
segregation’, while monosized carrier particles will 
produce a perfectly uniform mixture. 

For an ideal ordered mixture, Eqn. 4 shows 

that the sample concentration, from which the 
sample standard deviation is calculated, is a mea- 
sure of the ratio of the total surface area in a 
sample to the sample weight. For a given size 
(with respect to the number of carrier particles), 
the total surface area of carrier particles is smaller 
with larger mean carrier particle size. Hence, the 
standard deviation is anticipated to decrease with 
larger mean carrier particle size, which is con- 
sistent with the observed empirical relationship. 

In summary an inverse linear relationship be- 
tween sample standard deviation and the square- 
root of sample size was observed in the computer 
simulation of a coarse-fine ordered mixture. The 
results also suggest that a more homogeneous mix- 

ture is formed if the carrier particles have either a 
narrower size range or a larger mean size. These 

results may assist a pharmaceutical scientist to 
formulate an ordered mixture of high degree of 
homogeneity by paying attention to the effect of 
carrier particle size and size distribution on the 
final homogeneity of the mixture. 
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