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Summary

A computer simulation of ordered powder mixing has been carried out in order to ascertain the properties of ordered mixtures
independently of errors associated with sampling and assay. The effect of sample size on the standard deviation of sample
concentration has been ascertained for a variety of simulated mixes of various carrier particle sizes and particle size distributions,
Excepting the case where the carrier particles are monosized, an inverse relationship between sample standard deviation and the
square-root of sample size is found in all cases. This is identical to the situation when a random powder mix is formed. Thus
distinguishing between ordered and random mixtures must be based on other factors, i.e. interparticulate interaction, degree of
homogeneity and segregation tendencies. The standard deviation sample size relationship is not, as previously thought, a useful
criterion for ordered mixtures. Only when the carrier is monosized is the theoretical independent relationship of standard deviation
with sample size observed as demonstrated with ideal ordered mixtures. The results showed that for real ordered powder mixtures,
the carrier particle size should be as large as possible within other technological constraints and of narrow size range in order to

prepare homogeneous dose forms.

Introduction

Powder mixing is one of the major unit oper-
ations in pharmaceutical manufacturing. Unfor-
tunately pharmaceutical powder mixing is also
one of the least investigated processes. Most of the
available literature on powder mixing deals with
mixing of non-pharmaceutical ingredients and in
most cases, deals with random mixtures. Random
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mixtures can be achieved only when the powders
being mixed are free-flowing and non-interacting.
However, most pharmaceutical powder mixtures
do not fall into the criteria of random mixture and
contain interacting and non-free-flowing ingredi-
ents. Hence, the concept of ordered mixing was
proposed (Hersey, 1976) to explain powder mixing
of cohesive or interacting fine powders.

The simplest ordered powder mixture is a
coarse-fine particulate mixture in which the fine
particles, the adsorbents, adhere to the coarser
particles, the carriers. Several experimental meth-
ods have been developed to assess whether an
ordered coarse-fine particulate mixture has been
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formed. One of such methods is examining the
powder mixture under an electron microscope to
determine the degree of adhesion between the fine
and coarse powders (Crooks and Ho, 1976). The
electron microscopy method is tedious and re-
quires expansive equipment; moreover, the pre-
paration procedure of the sample for electron
microscopy may introduce artifacts into the re-
sults. A simpler sieving method (Yip and Hersey,
1977a) was introduced in which the ordered mix-
ture is sifted using a mesh size through which the
fine powder but not the coarse powder can pass.
The fine powders of a coarse-fine ordered mixture
do not pass through the sieve because of their
interaction with the coarse particles. So far the
method of sifting has not been standardized and
attrition of the powders during sifting may intro-
duce erroneous results.

Another method of assessing ordered mixtures
was proposed by Yeung and Hersey (1979). They
suggested that an ordered mixture is formed if the
standard deviation of samples of the mixture is a
constant and independent of the sizes of the sam-
ples taken. The standard deviations of different
samples of the microfine salicylic acid/coarse
lactose powder mixtures they investigated seemed
to confirm the independency of sample standard
deviations and sample sizes for an ordered mix-
ture. However, Orr (1979) suggested an alternate
explanation to the independency relationship. He
argued that the actual relationship between sam-
ple standard deviation and sample size was being
masked by the large standard errors due to sam-
pling and analytical procedures. However, Orr did
not propose what the actual relationship is. The
present investigation attempts to use computer
simulation to determine the actual relationship
between sample standard deviations and sample
sizes for a coarse-fine ordered mixture. Computer
simulation of ordered powder mixtures has the
advantage of assessing the properties of a powder
mixture without being affected by the dependent
phenomena associated with real systems. The re-
sults generated by the computer simulation also
give an insight to pharmaceutical powder mixing
of what powder mixture properties will result if
the size and size distribution of the carrier particle
of ordered powder mixture are being altered.

Theory

The adsorbent particles were assumed to be
much smaller than the carrier particles in size and
there was no ‘interbridge adhesion’ of adsorbent
particles with more than one carrier particle. Both
theoretical and experimental particle size distribu-
tions in literature have been reported mostly to be
log normal either by weight (Mehta et al., 1977) or
by number (Carstensen and Patel, 1975; Carsten-
sen and Rodriguez-Hornedo, 1985). In this study,
the carrier particles were spherical particles, where
(R,), is the radius of the i"™ carrier particle,
whose sizes were assumed to be log-normally (by
weight) distributed. The adsorbent particles were
monosized spherical particles of radius, R,. The
respective densities of carrier and adsorbent com-
ponents were p. and p,.

For a particular ordered system, 0.1% w/w
microfine salicylic acid and crystalline sugar mix-
ture, experiments have shown (Yip and Hersey,
1976) that the percentage coverage of the surface
of carrier sugar particles by the salicylic acid
particles is a constant and equal to approximately
2.5%. In the current work, this constancy in per-
centage coverage of the carrier particle surface by
adsorbent particles was assumed, as a constant A
(where A <1). Hence, the number of adsorbent
particles (N,), adhering to the i'" carrier particle
1s:

447 (R,)’
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The corresponding mass of adsorbent particles,
(M,), adhering to the i™ carrier particle is

(M,),= (N,)i37R;p, (2)

When a number of carrier particles is taken until
their total weight equals approximately the nomi-
nal sample size, W, the sample concentration of
the adsorbent component (in w/w unit) is calcu-
lated from the equation,
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where W, is the sample weight of the ;™ sample
and equals approximately the nominal sample size,
W; C; is the concentration (in w/w unit) of the
. .th .
adsorbent component in the j™ sample. Eqn. 3 is

simplified as:
2
KY(R.):
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where K =4Ap,R,/p. and is a constant for the
current system which has constant percentage
coverage of carrier particle surface, 4, with mono-
sized adsorbent particles, R,.

Experimental

The ideal ordered mixture was simulated
according to the above theory. A Control Data
Corporation CYBER 73 (96K) computer was used
for the simulation. The computer program for the
simulation which was written in Fortran language
is shown schematically as a flow chart in Fig. 1.

The weight of the carrier particles, which had a
log-normality of the size distribution was made
possible by generating a set of Z-scores and using
the logarithms of the mean carrier particle size, u
and the standard deviation of the carrier particle
size distribution, o. Mathematically the random
generation of particle weight, which has a log-nor-
mal size distribution, is described by the following
Eqgns. 5 and 6:

_Xx—logp
z= log o (5)

where Z is the randomly generated Z-score, x is
the random number which is log normally distrib-
uted, p is the mean particle size of the carrier
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particles, and o is the standard deviation of the
carrier particle size distribution. Hence, the weight
of a carrier particle is:

W.=10" (6)

A number of carrier particles were taken until the
total weight of carrier particles just exceeded the
nominal sample weight. For each size distribution
of carrier particles (which was characterized by p
and o), 20 samples of 10 different nominal sample
sizes were simulated.

The sample standard deviation at each sample
size was calculated using C; as defined by Eqn. 3.
The percentage coverage, A, the densities of the
carrier and the adsorbent components, p, and p,
in Eqn. 3 were constants and assumed a value of
unity to simplify the calculation.

The standard deviation-sample size relation-
ship of an ordered system was investigated in
three different conditions which are of practical
interest.

(A) Varying the size range of the carrier particles.
The standard deviation-sample size relationship
of an ideal ordered mixture was investigated,
whose carrier particles had the following combina-
tion of mean particles size, ¢ and standard devia-
tion of carrier particle size distribution, o.

(1) p=10, o = 1.86 (corresponding to a size

range 1-100)

(2) pn=231.48 o =1.34 (corresponding to a size
range 10-100)

(3) p=31.48 o =1.23 (corresponding to a size
range 14-70)

(4) pn=31.48 o0 =0.00 (corresponding to
monosized carrier par-
ticle)

(B) Varying the standard deviation of carrier
particle size distribution, o, while keeping the mean
carrier particle size, u, constant. The effects of
the standard deviation-sample size relationship
were investigated with various standard deviations
of the carrier particle size distribution whose val-
ues ranged from 107% to 107! (in weight units).
The mean particle sizes investigated were 31.48
and 314.8 (in weight units), respectively.

(C) Varying the mean carrier particle size while
keeping the standard deviation of the carrier particle
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Fig. 1. Schematic representation of the computer simulation program.




size distribution constant at a value, 10~ %. The
effects on the standard deviation—sample size re-
lationship were investigated with various mean
carrier particle sizes whose values ranged from 10
to 1000. The nominal sample weight was changed
proportionally with mean carrier particle. For ex-
ample, when the mean carrier particle size was
changed from 10 to 1000, the sample weight, 100
(in weight unit) was changed to 10,000 (in weight
units). The changes in nominal sample weight with
mean size were anticipated to allow a fair assess-
ment of the effects of varying mean particle size,
which eliminates the effects of changes in the
number of particles per sample.

TABLE 1

161
Results

Fig. 2 shows that an increase in carrier particle
size range correspondingly increased the sample
standard deviation. When monosized carrier par-
ticles (i.e. o =0) were used, the sample standard
deviation was independent of sample sizes and
equated to a value of zero, i.e. a perfectly uniform
mixture.

Tables 1 and 2 show that for a given sample
size, the ratio of sample standard deviation to the
logarithms of standard deviation of carrier particle
size distribution, o, is a constant at the 90% confi-
dence level. The aforementioned observation sug-
gests that the sample standard deviation and log(a)
are proportionally related.

Table 3 demonstrates no simple relationship

The ratio of the sample standard deviation to the logarithm of standard deviation of carrier particle size distribution o, with the
corresponding lower and upper 90 % confidence limits which are separated by a comma

Mean carrier particle size = 31.48 (in weight unit).

Sample size o
0.1 0.01 0.001 0.0001

100 0.621 0.568 0.549 0.566
0.483, 0.820 0.442, 0.750 0.427, 0.724 0.440, 0.747

150 0.475 0.500 0.573 0.500
0.369, 0.627 0.389, 0.660 0.445,0.757 0.389, 0.660

200 0.443 0.445 0.405 0.445
0.345, 0.565 0.346, 0.588 0.315, 0.535 0.346, 0.588

300 0.390 0.349 0.394 0.348
0.303, 0.515 0.271, 0.461 0.306, 0.520 0.271, 0.459

600 0.265 0.263 0.260 0.249
0.206, 0.350 0.205, 0.347 0.202, 0.343 0.194, 0.329

1000 0.226 0.205 0.189 0.216
0.176, 0.298 0.159, 0.271 0.147, 0.250 0.168, 0.285

2000 0.133 0.123 0.133 0.133
0.103, 0.176 0.096, 0.162 0.103, 0.176 0.103, 0.176

4000 0.113 0.102 0.102 0.103
0.088, 0.149 0.079, 0.135 0.079, 0.135 0.080, 0.136

8000 0.071 0.073 0.063 0.070
0.055, 0.094 0.057, 0.096 0.049, 0.083 0.054, 0.092

15,000 0.052 0.049 0.051 0.048
0.040, 0.069 0.038, 0.065 0.040, 0.067 0.037, 0.063
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exists between the sample standard deviation and
50| mean carrier particle size. But in general, an in-
crease in mean particle size, p, decreases the sam-
ple standard deviation.

Fig. 2 shows that the logarithm of sample size
10L and the logarithm of the sample standard devia-
tion are linearly related with a slope of an ap-

Fig. 2. The variance—sample size relationship of ideal ordered
mixtures which have the following combination of mean par-

Sample standard deviation of adsorbent particles

© ticle size, u, and standard deviation of carrier particle size
2 distribution, o.
g e & 1 =10.00; 0 =1.86 (slope —0.532; correlation coefficient
o —0.997)
C;’ A: p=23148; o0=1.34 (slope —0.509; correlation coefficient
Tl be e o—b — b o o lo le. — —0.998)
100 500 1000 5000 10000 W 1 =3148; ¢ =123 (slope —0.510; correlation coefficient
Sample size {(in weight unit log sccle ) 70999)
®: 1 =31.48; o =0.00 (slope 0: coefficient 1.000)
TABLE 2

The ratio of the sample standard deviation to the logarithm of standard deviation of carrier particle size distribution o, with the
corresponding lower and upper 90 % confidence limits which are separated by a comma

Mean carrier particle size = 314.8 (in weight unit).

Sample size o
0.1 0.01 0.001 0.0001

1000 0.269 0.264 0.263 0.278
0.224, 0.380 0.205, 0.349 0.205, 0.347 0.216,0.327

1500 0.221 0.232 0.232 0.259
0.172,0.292 0.180, 0.306 0.180, 0.306 0.201, 0.342

2000 0.206 0.207 0.207 0.230
0.160,0.272 0.161,0.273 0.161,0.273 0.179,0.303

3000 0.181 0.162 0.162 0.161
0.141, 0.239 0.126,0.214 0.126,0.214 0.125.0.213

6000 0.123 0122 0.116 0.117
0.096, 0.162 0.094, 0.161 0.090, 0.153 0.091,0.154

10,000 0.105 0.095 0.100 0.096
0.082, 0.139 0.074, 0.125 0.078,0.132 0.075,0.127

20,000 0.062 0.057 0.062 0.062
0.048, 0.082 0.044, 0.075 0.048, 0.082 0.048, 0.082

40,000 0.052 0.047 0.048 0.046
0.040, 0.069 0.037, 0.062 0.037,0.063 0.063, 0.061

80,000 0.033 0.034 0.032 0.033
0.026, 0.045 0.026, 0.045 0.025, 0.042 0.026, 0.044

150,000 0.024 0.023 0.022 0.024

0.019, 0.032 0.018, 0.030 0.017, 0.029 0.019, 0.032




TABLE 3

The sample standard deviation (X 10°) at different sample sizes
of an ideal mixture with different mean carrier size distribution,
but with a constant standard deviation of carrier size distribution,
10-¢

Nominal Mean carrier particle size (in weight units)
sample 10 100 1000 10,000
size
100 5.379 2,497 1.159 0.438
150 3.763 1.747 0.883 0.387
200 3.708 1.721 0.833 0.439
300 3.032 1.408 0.653 0.315
600 2.018 0.937 0.435 0.202
1000 1.796 0.834 0.387 0.180
2000 1.331 0.618 0.287 0.133
4000 0.831 0.386 0.179 0.083
8000 0.583 0.271 0.126 0.058
15,000 0.443 0.206 0.096 0.044

# The nominal sample size is the sample size for the ideal
ordered mixture with mean carrier particle size, 10, the sample
size for mixture with different mean carrier particle size is
changed proportionally (see text).

proximated value, —0.5, with the exception of
sample standard deviation at value zero when the
logarithm of sample standard deviation is mathe-
matically undefined. In linear terms, there is an
inverse linear relationship between sample stan-
dard deviation and the square-root of sample size.

Discussion

The above results suggest that there is an in-
verse relationship between sample standard devia-
tion and the square-root of sample size, excepting
when the sample standard deviation is zero, when
it is independent of sample size. Also sample
standard deviation increases with larger size range
of carrier particles, and sample standard deviation
decreases with larger mean carrier particle size.
Thus the empirical relationship of the coarse-fine
ordered mixture investigated is similar to the
standard deviation—sample size relationship of a
random mixture (Lacey, 1953). The present results
seem to confirm Orr’s (1979) belief that the sam-
ple standard deviation is not independent of the
sample size for an ordered mixture. The empirical
relationship between sample size and standard
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deviation can be used for extrapolating the stan-
dard deviation—sample size relationship to the re-
quired sample size. This extrapolation is possible
only when the trend of the standard devia-
tion—sample size is not masked by large experi-
mental errors.

A wide size range of carrier particles has been
suggested to cause ‘ordered unit segregation’ which
subsequently leads to a less homogeneous ordered
mixture (Yip and Hersey, 1977b). The above re-
lationship suggests that even in the absence of
‘ordered unit segregation’, the homogeneity of an
ordered mixture can be decreased by simply using
a large size range of carrier particles. A narrow
size range of carrier particles has dual advantages
of both increasing the homogeneity and maintain-
ing that homogeneity by avoiding ‘ordered unit
segregation’, while monosized carrier particles will
produce a perfectly uniform mixture.

For an ideal ordered mixture, Eqn. 4 shows
that the sample concentration, from which the
sample standard deviation is calculated, is a mea-
sure of the ratio of the total surface area in a
sample to the sample weight. For a given size
(with respect to the number of carrier particles),
the total surface area of carrier particles is smaller
with larger mean carrier particle size. Hence, the
standard deviation is anticipated to decrease with
larger mean carrier particle size, which is con-
sistent with the observed empirical relationship.

In summary an inverse linear relationship be-
tween sample standard deviation and the square-
root of sample size was observed in the computer
simulation of a coarse-fine ordered mixture. The
results also suggest that a more homogeneous mix-
ture is formed if the carrier particles have either a
narrower size range or a larger mean size. These
results may assist a pharmaceutical scientist to
formulate an ordered mixture of high degree of
homogeneity by paying attention to the effect of
carrier particle size and size distribution on the
final homogeneity of the mixture.
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